Monday, 12 March 2012

Industri Acetaldehyda


PENDAHULUAN 
Asetaldehyda atau menurut nama sistematisnya etanal adalah sebuah senyawa organik dari kelompok aldehida dengan rumus kimia CH3CHO atau MeCHO. Senyawa ini merupakan cairan mudah terbakar, larut dalam air, dan baunya sangat menyengat.  Asetaldehyda terdapat dalam buah-buahan, kopi yang sudah matang, dan roti segar. Senyawa ini dihasilkan oleh tumbuhan dalam metabolisme normalnya. Proses yang terjadi pada industri ini hanya memiliki satu proses, dimana prosesnya dapat dilihat dari diagram alir pembuatan asetaldehyda dari proses hydrasi C2H4. Asetaldehyda juga merupakan intermediet dalam produksi asam asetat, beberapa ester, dan zat-zat kimia lainnya.


Industri Acetaldehyda

Sifat fisik dan kimia bahan baku dan produk
·      Bahan baku : Etilen
Ø  Rumus kimia         : C2H4
Ø  Berat molekul        : 28,03 g/mol
Ø  Titik leleh              : -169,4 °C
Ø  Titik didih             : -103,7 °C
Ø  Density                  : 0,5699 g/ml
Ø  Kelarutan              : Mudah larut dalam air

·      Produk utama : Asetaldehida
Ø  Rumus kimia         : CH3CHO
Ø  Berat molekul        : 44,05 g/mol
Ø  Titik leleh              : -123,5 °C
Ø  Titik didih             : 20.2 °C
Ø  Density                  : 0,788 g/ml
Ø  Bau                        : Sangat menyengat
Ø  Kelarutan              : - Larut dalam air
                                      - Pelarut organik
Ø  Penampilan            :  Cairan Tak Berwarna

·      Bahan Tambahan : Air
Ø  Rumus kimia         : H2O
Ø  Berat molekul        : 18 g/mol
Ø  Density                  : 1000 kg m-3 to liquid (40 °C)
Ø  Titik didih             : 100 °C
Ø  Titik lebur              : 0 °C


·      Produk samping : Cuprum (II) Klorida
Ø  Rumus kimia         : CuCl2
Ø  Berat molekul        : 134.45 g/mol
Ø  Density                  : 3.386 g/cm3 (solid)
Ø  Titik didih             : 993 °C
Ø  Titik lebur              : 620 °C

·      Produk buangan : Asam Klorida
Ø  Rumus kimia         : HCl
Ø  Berat molekul        : 36.46 g/mol
Ø  Density                  : 1.18g/cm3
Ø  Bahaya                  : sangat korosif
Ø  Titik didih             : 110 °C (383 K), 20.2% solution
                                      48 °C (321 K), 38% solution
Ø  Titik lebur              : −27.32 °C (247 K), 38% solution.

Metode atau Klasifikasi Produk
            Pembuatan asetaldehida memiliki klasifikasi produksi yaitu dengan proses :
·         Reaksi hydrasi
·         Reaksi regenerasi katalis

Data kuantitatif
            Basis 1 ton produk CH3CHO (Asetaldehida)           
96    % yield

      Reaksi kimia
·         Reaksi Hydrasi
C2H4 + 2CuCl2 + H2O      →        CH3CHO + 2CuCl + 2HCl
·         Reaksi regenerasi katalis
2CuCl + 2HCl + 1/2O2     →        2CuCl2 + H2O

Uraian proses
Bahan baku yaitu etilen (C2H4) dalam bentuk gas mula-mula dikompresikan (ditekan) oleh kompressor masuk kedalam reaktor yang berisi katalis CuCl2 larutan, dimana kondisi operasinya dijaga pada temperatur 50 – 100 °C selama 6 – 40 menit. Pada reaktor ini terjadi reaksi hydrasi yaitu :
C2H4  +  2CuCl2 +  H2O    →        CH3CHO +  2CuCl +  2HCl
Hasil dari reaktor diumpankan masuk ke cyclone separator. Pada cyclone separator ini, produk Asetaldehyda keluar pada bagian top (atas) dan dapat diumpankan masuk ke separator. Sedangkan pada bagian bottom (bawah) berupa CuCl, HCl, dan Asetaldehyda yang masih bercampur dengan etilen yang tidak bereaksi diumpankan masuk ke stripper. Pada stripper terjadi pemisahan dengan bantuan steam. Bagian top  berupa asetaldehyda yang masih bercampur dengan etilen yang tidak bereaksi diumpankan masuk ke separator untuk dipisahkan dari etilen yang tidak bereaksi dengan bantuan olefin, sehingga menghasilkan produk reaksi. Sedangkan etylen sisa digunakan kembali untuk umpan awal (recycle). Persen yield asetaldehyda ini cukup tinggi yakni sekitar 96 %.
Pada bagian bottom (bawah) cyclone separator berupa CuCl dan HCl dipompakan masuk ke regenerator menjadi katalis CuCl2. Pada regenerator ini terjadi reaksi regenerasi katalis dengan bantuan O2 yang dikompresikan masuk ke regenerator. Reaksinya yaitu :
2CuCl + 2HCl + 1/2O2     →        2CuCl2 + H2O
Hasil dari regenerator masuk kedalam cyclone separator dimana terjadi pemisahan antara CuCl2 dan H2O dengan O2 yang tidak bereaksi. Pada bagian top merupakan keluaran O2 yang direcycle kembali ke regenerator. Pada bagian bottom berupa CuCl2 dan H2O yang terbentuk dari pencucian katalis, dapat di recycle kembali masuk ke reaktor melalui pompa. Proses ini berlangsung secara kontinyu, dimana kemungkinan bahan terbuang akan sangat kecil sekali.

Fungsi alat dan kegunaan
Ø Fungsi dari alat yang digunakan dalam industri Asetaldehyda :
·            Kompressor   :    digunakan untuk menurunkan tekanan dari suatu operasi proses  untuk mengubah kondisi operasi
·            Reaktor          :    alat yang digunakan sebagai tempat terjadinya suatu reaksi kimia
·            Separator       :   digunakan untuk tempat pemisahan campuran zat
·            Pompa            :   mempercepat energi mekanik fluida cair
·            Stipper           :    tempat pemisahan campuran zat kimia dengan bantuan steam
·            Regenerator   :    tempat untuk pembentukan kembali senyawa kimia dari         pencucian katalis
·            Cyclon Separator : Kolom tempat terjadinya pemisahan campuran zat kimia

Ø Asetaldehyda dapat digunakan sebagai bahan baku dalam pembuatan :
·                        Asam Asetat
·                        Asetat an-hydrid
·                        Ester Asetat

Kesimpulan
Dari data-data yang telah dikumpulkan dapat disimpulkan bahwa :
·            Asetaldhyda merupakan senyawa organik dari kelompok aldehida dengan rumus kimia CH3CHO yang sifatnya yang mudah terbakar, larut dalam air, dan baunya sangat menyengat
·            Kegunaan dari asetaldehyda adalah sebagai bahan baku dalam pembuatan Asam asetat, Asetat an-hydrid, dan ester Asetat.
·            Alat-alat yang digunakan dalam industri Asetaldehyda adalah sbb :
Kompressor, Reaktor, Separator, Stipper, Regenerator, dan Cyclon separator
·                                    Adapun reaksi yang terjadi adalah :
Reaksi Hydrasi
C2H4 + 2CuCl2 + H2O                        →        CH3CHO + 2CuCl + 2HCl
Reaksi regenerasi katalis
2CuCl + 2HCl + 1/2O2           →        2CuCl2 + H2O
Lampiran
Acetaldehyda (CH3CHO)
From Wikipedia, the free encyclopedia
Acetaldehyde (systematically: ethanal) is an organic chemical compound with the formula CH3CHO or MeCHO. It is a flammable liquid with a fruity smell. Acetaldehyde occurs naturally in ripe fruit, coffee, and fresh bread, and is produced by plants as part of their normal metabolism. It is popularly known as the chemical that causes hangovers.
Acetaldehyde
Chemical structure of acetaldehyde
Chemical structure of acetaldehyde
Flat structure of acetaldehyde
Three-dimensional structure of acetaldehyde
Acetaldehyde
Ethanal
Identifiers
75-07-0
AB1925000
Properties
C2H4O
44.05 g mol−1
Appearance
Colorless liquid
Pungent, fruity odor
0.788 g cm−3
−123.5 °C (139.5 K)
20.2 °C (293.2 K)
soluble in all proportions
~0.215 at 20 °C
Structure
trigonal planar (sp²) at C1
tetrahedral (sp³) at C2
2.7 D
Hazards
Very flammable (F+)
Harmful (Xn)
Carc. Cat. 3
4
2
0























Ethylene (C2H4)

From Wikipedia, the free encyclopedia

Ethylene (IUPAC name: ethene) is the chemical compound with the formula C2H4. It is the simplest alkene. Because it contains a carbon-carbon double bond, ethylene is called an unsaturated hydrocarbon or an olefin. It is extremely important in industry and also has a role in biology as a hormone.[2] Ethylene is the most produced organic compound in the world; global production of ethylene exceeded 107 million metric tonnes per year in 2005.[3] To meet the ever increasing demand for ethylene, sharp increases in production facilities have been added globally, particularly in the Gulf countries.
Ethylene
EthyleneEthylene
General
C2H4
IUPAC Name
Ethene
C=C
28.05 g/mol
Appearance
colorless gas
[74-85-1]
Properties
1.178 kg/m³ at 15 °C, gas [1]
3.5 mg/100 ml (17 °C)
−169.2 °C (104.0 K, -272.6 °F)
−103.7 °C (169.5 K, -154.7 °F)




+52.47 kJ/mol
219.32 J·K−1·mol−1
Structure
D2h
Zero
Hazards
Extremely flammable (F+)
4
1
2












 

Hydrochloric acid (HCl)

From Wikipedia, the free encyclopedia

Hydrochloric acid is the solution of hydrogen chloride (HCl) in water. It is a highly corrosive, strong mineral acid and has major industrial uses. It is found naturally in gastric acid.Historically called muriatic acid or spirits of salt, hydrochloric acid was produced from vitriol and common salt. The alchemist Jabir ibn Hayyan first formally described it in the eighth century. During the Middle Ages, it was used by alchemists in the quest for the philosopher's stone, and later by European scientists including Glauber, Priestley, and Davy in their scientific research.With major production starting in the Industrial Revolution, hydrochloric acid is used in the chemical industry as a chemical reagent in the large-scale production of vinyl chloride for PVC plastic, and MDI/TDI for polyurethane. It has numerous smaller-scale applications, including household cleaning, production of gelatin and other food additives, descaling, and leather processing. About 20 million metric tonnes of hydrochloric acid are produced annually.
Hydrochloric acid
Molecular model of hydrogen chloride
Hydrochloric acid
Other names
Muriatic acid, Spirit(s) of Salt, Chlorane
Identifiers
7647-01-0
MW4025000
Properties
HCl in water (H2O)
36.46 g/mol (HCl)
Appearance
Clear colorless to
light-yellow liquid
1.18g/cm3
−27.32 °C (247 K)
38% solution.
110 °C (383 K),
20.2% solution;
48 °C (321 K),
38% solution.
Miscible.
Acidity (pKa)
−8.0
1.9 mPa·s at 25 °C,
31.5% solution
Hazards
Corrosive (C)
EU Index
017-002-01-X
0
3
1
COR
Non-flammable.
Related compounds
Other anions
F-, Br-, I-
Related acids
n, εr, etc.
Phase behaviour
Solid, liquid, gas
UV, IR, NMR, MS
Except where noted otherwise, data are given for
materials in their
standard state
(at 25 °C, 100 kPa)

Infobox references



Copper (II) chloride (CuCl2)

From Wikipedia, the free encyclopedia

Copper(II) chloride is the chemical compound with the formula CuCl2. This a yellow-brown solid which slowly absorbs moisture to form a blue-green dihydrate.
Copper(II) chloride
copper(II) chloride dihydrate
Crystal structure of anhydrous copper(II) chloride
Crystal structure of anhydrous copper(II) chloride
Copper(II) chloride
Copper dichloride
Other names
Cupric chloride
Identifiers
7447-39-4,
10125-13-0 (dihydrate)
GL7000000
Properties
CuCl2
134.45 g/mol (anhydrous)
170.48 g/mol (dihydrate)
Appearance
yellow-brown solid (anhydrous)
blue-green solid (dihydrate)
3.386 g/cm3 (anhydrous)
2.51 g/cm3 (dihydride)
498 °C (anhydrous)
100 °C (dehydration of dihydrate)
993 °C (anhydrous, decomp)
70.6 g/100 mL (0 °C)
75.7 g/100 mL (25 °C)
53 g/100 mL (15 °C)
Structure
distorted CdI2 structure
Hazards
Not listed
Non-flammable









Water (H2O)

From Wikipedia, the free encyclopedia

Water (H2O, HOH) is the most abundant molecule on Earth's surface, constituting about 70% of the Earth's surface in liquid, solid, and gaseous states. It is in dynamic equilibrium between the liquid and gas states at standard temperature and pressure. At room temperature, it is a nearly colorless (with a hint of blue), tasteless, and odorless liquid. Many substances dissolve in water and it is commonly referred to as the universal solvent. Because of this, water in nature and in use is rarely pure, and may have some properties different from those in the laboratory. However, there are many compounds that are essentially, if not completely, insoluble in water. Water is the only common substance found naturally in all three common states of matter—for other substances, see Chemical properties. Water is essential for all life on Earth. Water also usually makes up 55% to 78% of the human body.[3]
Water (H2O)
The water molecule has this basic geometric structure
Space filling model of a water molecule
Water
Other names
Identifiers
7732-18-5
ZC0110000
Properties
H2O
18.01528(33) g/mol
Appearance
white solid or almost colourless, transparent, with a slight hint of blue, crystalline solid or liquid [1]
1000 kg·m−3, liquid (4 °C)
917 kg·m−3, solid
°C, 32 °F (273.15 K)[2]
100 °C, 212 °F (373.15 K)[2]
Acidity (pKa)
15.74
~35-36
Basicity (pKb)
15.74
0.001 Pas at 20 °C
Structure
Hexagonal
See ice
1.85 D
Hazards
Main hazards
None (see also Dihydrogen monoxide hoax)
Related compounds
Other cations
Related solvents
Related compounds
Except where noted otherwise, data are given for
materials in their
standard state
(at 25 °C, 100 kPa)

Infobox references
Olefin
Olefin, also known as polypropylene or polyethylene, is a long-chain polymer synthetic fiber. It is created when ethylene and/or propylene gases are polymerized under very specific conditions. Olefin was first manufactured in the late 1950s, and has a myriad of applications in manufacturing, household products and clothing. Use of olefin has steadily increased since the 1960s, and continues to gain in popularity every year as new uses for this easy, durable material are found.
Olefin is created when the polymers are melted to a liquid, then run through a machine called a spinneret, which forces the product into a long fiber through small holes. This fiber is then used to make the fabric, or the end product in which it will be used. Because olefin resists dyeing, any dye must be added during this melting process, instead of to the final fabric or product. It is highly favored due to its easy, inexpensive manufacturing process. Surprisingly, olefin is relatively environmentally “friendly” due to the few byproducts produced during manufacturing. Olefin is also easily recycled.
There are several benefits of using olefin. It is very tough and hard wearing, colorfast and stain resistant. The lightweight material — it has the lightest “specific gravity” of any other fabric — dries quickly and wicks sweat and water from the skin. Materials made with olefin holds its shape extremely well, making it good for packing and active use. It also produces very little static, and weathers well in the sun, as long as special stabilizers are added during manufacturing. Olefin is also highly resistant to deterioration from chemicals and moisture. One of the drawbacks of olefin is that, because it has a low melting point, it is flammable and will melt if exposed to high heat.
Olefin is manufactured under several different names, including some very well known such as Tyvek® by DuPont®, Thinsulate® by 3M® and Duraguard® by Kimberly-Clark®. The material is used in everything from active wear, clothing, car and furniture upholstery, truck liners, indoor/outdoor carpeting, wallpaper/wallcoverings, bedding construction and ropes. Olefin is also used in cigarette filters and diapers. In clothing, it is easy to care for — just wash normally and line dry or dry on low heat. Due to its sensitivity to heat, keep clothing made with olefin away from the iron and other sources of extreme heat.

Pertanyaan

Ø  Pertanyaan dari Abdurrahman Hafidz :
Sebutkan hasil dari reaktor dan reaksi yang terjadi? Mengapa pemisahan zat kimia terjadi 2x yaitu pada cyclone separator dan stripper. Apa tujuannya ?
Jawab :
            Pada reaktor terjadi reaksi hydrasi yaitu :
      C2H4  +  2CuCl2 +  H2O          →        CH3CHO +  2CuCl +  2HCl
Hasil dari reaktor berupa Asetaldehyda, CuCl, HCl dan Asetaldehyda yang masih bercampur dengan etilen yang tidak bereaksi yang akan diumpankan masuk ke cyclone separator. Tujuan cyclone separator adalah untuk memisahkan Asetaldehyda (CH3CHO) pada bagian top sedangkan pada bagian bottom berupa CuCl, HCl, dan Asetaldehyda yang masih bercampur dengan etilen yang tidak bereaksi. Karena adanya etilen yang tidak bereaksi maka akan dipisahkan lagi menggunakan stripper dengan bantuan steam (pemanas) yang mendorong bahan dari bawah agar dapat keluar pada bagian atas, yaitu berupa asetaldehyda yang masih bercampur dengan etilen yang tidak bereaksi sedangkan bagian bottom berupa CuCl dan HCl.





No comments:

Post a Comment

Sharing is caring <3

Related Posts Plugin for WordPress, Blogger...